Optical Sciences

Biomolecules and nanostructures

The Optical Sciences group studies the interaction of light and matter. Our current focus is on detection and sensing/imaging with an emphasis on the development of integrated photonics. We are part of Twente University's Department of Science and Technology and member of the MESA+ institute.

 

Photoplastic near-field optical probe with sub-100 nm aperture made by replication from a nanomould

(full pdf)

Kim GM, Kim BJ, Ten Have ES, Segerink F, Van Hulst NF, Brugger J
JOURNAL OF MICROSCOPY-OXFORD
vol 209: p267-p271 part 3 MAR 2003

Polymers have the ability to conform to surface contours down to a few nanometres. We studied the filling of transparent epoxy-type EPON SU-8 into nanoscale apertures made in a thin metal film as a new method for polymer/metal near-field optical structures. Mould replica processes combining silicon micromachining with the photo-curable SU-8 offer great potential for low-cost nanostructure fabrication. In addition to offering a route for mass production, the transparent pyramidal probes are expected to improve light transmission thanks to a wider geometry near the aperture. By combining silicon MEMS, mould geometry tuning by oxidation, anti-adhesion coating by self-assembled monolayer and mechanical release steps, we propose an advanced method for near-field optical probe fabrication. The major improvement is the possibility to fabricate nanoscale apertures directly o­n wafer scale during the microfabrication process and not o­n free-standing tips. Optical measurements were performed with the fabricated probes. The full width half maximum after a Gaussian fit of the intensity profile indicates a lateral optical resolution of approximate to 60 nm.
Printable version