Optical Sciences

Biomolecules and nanostructures

The Optical Sciences group studies the interaction of light and matter at the nanoscale. We do this by exploring ways to shape light and its environment. It's what we call active and passive control. Our current focus is on the interaction of light with biomolecules and nanostructures. We are part of Twente University's Department of Science and Technology and member of the MESA+ institute.
We participate in the EU-COST actions MP1102: Coherent Raman microscopy (MicroCor) and CM1202: Supramolecular photocatalytic water splitting (PERSPECT-H2O)


Energy Transfer in Single-Molecule Photonic Wires

(full pdf)

María F. García-Parajó, Dr., Jordi Hernando, Dr., Gabriel Sanchez Mosteiro, Jacob P. Hoogenboom, Dr., Erik M. H. P. van Dijk, Dr., Niek. F. van Hulst, Prof.
Volume 6, Issue 5, P819 - 827 apr 22 2005
ext. link

Molecular photonics is a new emerging field of research around the premise that it is possible to develop optical devices using single molecules as building blocks. Truly technological impact in the field requires focussed efforts on designing functional molecular devices as well as having access to their photonic properties on an individual basis. In this Minireview we discuss our approach towards the design and single-molecule investigation of one-dimensional multimolecular arrays intended to work as molecular photonic wires. Three different schemes have been explored: a) perylene-based dimer and trimer arrays displaying coherent exciton delocalisation at room temperature; b) DNA-based unidirectional molecular wires containing up to five different chromophores and exhibiting weak excitonic interactions between neighbouring dyes; and c) one-dimensional multichromophoric polymers based on perylene polyisocyanides showing excimerlike emission. As a whole, our single-molecule data show the importance of well-defined close packing of chromophores for obtaining optimal excitonic behaviour at room temperature. Further improvement on (bio)chemical synthesis, together with the use of single-molecule techniques, should lead in the near future to efficient and reliable photonic wires with true device functionality.
Printable version