Optical Sciences

Biomolecules and nanostructures

The Optical Sciences group studies the interaction of light and matter at the nanoscale. We do this by exploring ways to shape light and its environment. It's what we call active and passive control. Our current focus is on the interaction of light with biomolecules and nanostructures. We are part of Twente University's Department of Science and Technology and member of the MESA+ institute.
We participate in the EU-COST actions MP1102: Coherent Raman microscopy (MicroCor) and CM1202: Supramolecular photocatalytic water splitting (PERSPECT-H2O)

 

λ/4 Resonance of an Optical Monopole Antenna Probed by Single Molecule Fluorescence

(full pdf)

Tim H. Taminiau, Robert J. Moerland, Frans B. Segerink, Laurens Kuipers, and Niek F. van Hulst
Nanoletters
vol. 7 issue 1 p28-33 jan 07

We present a resonant optical nanoantenna positioned at the end of a metal-coated glass fiber near-field probe. Antenna resonances, excitation conditions, and field localization are directly probed in the near field by single fluorescent molecules and compared to finite integration technique simulations. It is shown that the antenna is equivalent to its radio frequency analogue, the monopole antenna. For the right antenna length and local excitation conditions, antenna resonances occur that lead to an enhanced localized field near the antenna apex. Direct mapping of this field with single fluorescent molecules reveals a spatial localization of 25 nm, demonstrating the importance of such antennas for nanometer resolution optical microscopy.
Printable version