Optical Sciences

Biomolecules and nanostructures

The Optical Sciences group studies the interaction of light and matter at the nanoscale. We do this by exploring ways to shape light and its environment. It's what we call active and passive control. Our current focus is on the interaction of light with biomolecules and nanostructures. We are part of Twente University's Department of Science and Technology and member of the MESA+ institute.
We participate in the EU-COST actions MP1102: Coherent Raman microscopy (MicroCor) and CM1202: Supramolecular photocatalytic water splitting (PERSPECT-H2O)

 

Power-Law Blinking in the Fluorescence of Single Organic Molecules

(full pdf)

Jacob P. Hoogenboom, Jordi Hernando, Erik M. H. P. van Dijk, Niek F. van Hulst, and Maria F. García-Parajó
ChemPhysChem
vol 8 issue 6, p823 - 833 march 23 2007

The blinking behavior of perylene diImide molecules is investigated at the single-molecule level. We observe long-time scale blinking of individual multi-chromophoric complexes embedded in a poly(methylmethacrylate) matrix, as well as for the monomeric dye absorbed on a glass substrate at ambient conditions. In both these different systems, the blinking of single molecules is found to obey analogous power-law statistics for both the on and off periods. The observed range for single-molecular power-law blinking extends over the full experimental time window, covering four orders of magnitude in time and six orders of magnitude in probability density. From molecule to molecule, we observe a large spread in off-time power-law exponents. The distributions of off-exponents in both systems are markedly different whereas both on-exponent distributions appear similar. Our results are consistent with models that ascribe the power-law behavior to charge separation and (environment-dependent) recombination by electron tunneling to a dynamic distribution of charge acceptors. As a consequence of power-law statistics, single molecule properties like the total number of emitted photons display nonergodicity.
Printable version