Optical Sciences

Biomolecules and nanostructures

The Optical Sciences group studies the interaction of light and matter. Our current focus is on detection and sensing/imaging with an emphasis on the development of integrated photonics. We are part of Twente University's Department of Science and Technology and member of the MESA+ institute.

 

H/D isotope effects in high temperature proton conductors

(full pdf)

N. Bonanos, A. Huijser, F.W. Poulsen
Solid State Ionics
online 6 April 2015
doi:10.1016/j.ssi.2015.03.028

The atomic mass ratio of ca. 2 between deuterium and hydrogen is the highest for any pair of stable isotopes and results in significant and measurable H/D isotope effects in high temperature proton conductors containing these species. This paper discusses H/D isotope effects manifested in O-H/O-D vibration frequencies, the mobility of H+/D+ carriers, the kinetics of the electrochemical oxidation of H2/D2, the solubilities of H2O/D2O and, finally, the spontaneous electromotive force that appears across H2/D2 cells with proton conducting electrolytes. Comparable work on tritium-exchanged materials is also discussed. The results highlight the usefulness of isotope effects in the study of high temperature proton conductors. © 2015 Elsevier B.V. All rights reserved.
Printable version