Optical Sciences

Biomolecules and nanostructures

The Optical Sciences group studies the interaction of light and matter at the nanoscale. We do this by exploring ways to shape light and its environment. It's what we call active and passive control. Our current focus is on the interaction of light with biomolecules and nanostructures. We are part of Twente University's Department of Science and Technology and member of the MESA+ institute.
We participate in the EU-COST actions MP1102: Coherent Raman microscopy (MicroCor) and CM1202: Supramolecular photocatalytic water splitting (PERSPECT-H2O)

 

Fabrication of three-dimensional nanostructures by focused ion beam milling

(full pdf)

Tjerkstra RW, Segerink FB, Kelly JJ, Vos WL
Journal of Vacuum Science&Technology B
vol. 26 issue 3 p973-977 may 7, 2008
doi:10.1116/1.2912079

The fabrication of an extended three-dimensional nanostructure with dimensions much larger than the feature size using a focused ion beam is described. By milling two identical patterns of pores with a designed diameter of 460 nm in orthogonal directions, a photonic crystal with an inverse woodpile structure was made in a gallium phosphide single crystal. The patterns are aligned with an unprecedented accuracy of 30 nm with respect to each other. The influence of GaP redeposition on the depth, shape, and size of the pores is described. A literature study revealed that the redeposition of GaP during milling is more pronounced than that of Si found in previous studies. An explanation for this phenomenon is given. ©2008 American Vacuum Society
Printable version