Optical Sciences

Biomolecules and nanostructures

The Optical Sciences group studies the interaction of light and matter at the nanoscale. We do this by exploring ways to shape light and its environment. It's what we call active and passive control. Our current focus is on the interaction of light with biomolecules and nanostructures. We are part of Twente University's Department of Science and Technology and member of the MESA+ institute.
We participate in the EU-COST actions MP1102: Coherent Raman microscopy (MicroCor) and CM1202: Supramolecular photocatalytic water splitting (PERSPECT-H2O)


Pharmaceutical applications of non-linear imaging

(full pdf)

Clare J. Strachan, Maike Windbergs, Herman L. Offerhaus
International Journal of Pharmaceutics
vol 417 issues 1-2 p.163– 172 sept 30, 2011

Non-linear optics encompasses a range of optical phenomena, including two- and three-photon fluorescence, second harmonic generation (SHG), sum frequency generation (SFG), difference frequency generation (DFG), third harmonic generation (THG), coherent anti-Stokes Raman scattering (CARS), and stimulated Raman scattering (SRS). The combined advantages of using these phenomena for imaging complex pharmaceutical systems include chemical and structural specificities, high optical spatial and temporal resolutions, no requirement for labels, and the ability to image in an aqueous environment. These features make such imaging well suited for a wide range of pharmaceutical and biopharmaceutical investigations, including material and dosage form characterisation, dosage form digestion and drug release, and drug and nanoparticle distribution in tissues and within live cells. In this review, non-linear optical phenomena used in imaging will be introduced, together with their advantages and disadvantages in the pharmaceutical context. Research on pharmaceutical and biopharmaceutical applications is discussed, and potential future applications of the technology are considered.
Printable version