Optical Sciences

Biomolecules and nanostructures

The Optical Sciences group studies the interaction of light and matter at the nanoscale. We do this by exploring ways to shape light and its environment. It's what we call active and passive control. Our current focus is on the interaction of light with biomolecules and nanostructures. We are part of Twente University's Department of Science and Technology and member of the MESA+ institute.
We participate in the EU-COST actions MP1102: Coherent Raman microscopy (MicroCor) and CM1202: Supramolecular photocatalytic water splitting (PERSPECT-H2O)

 

Excited-State Proton-Transfer Processes of DHICA Resolved: From Sub-Picoseconds to Nanoseconds

(full pdf)

Alice Corani, Alessandro Pezzella, Torbjörn Pascher, Thomas Gustavsson, Dimitra Markovitsi, Annemarie Huijser, Marco d’Ischia , and Villy Sundström
Journal of Physical Chemistry Letters
vol 4, p1383–1388 april 8, 2013
doi:10.1021/jz400437q

Excited-state proton transfer has been hypothesized as a mechanism for UV energy dissipation in eumelanin skin pigments. By using time-resolved fluorescence spectroscopy, we show that the previously proposed, but unresolved, excited-state intramolecular proton transfer (ESIPT) of the eumelanin building block 5,6-dihydroxyindole-2-carboxylic acid (DHICA) occurs with a time constant of 300 fs in aqueous solution but completely stops in methanol. The previously disputed excited-state proton transfer involving the 5- or 6-OH groups of the DHICA anion is now found to occur from the 6-OH group to aqueous solvent with a rate constant of 4.0 × 108 s-1.
Printable version