Optical Sciences

Biomolecules and nanostructures

The Optical Sciences group studies the interaction of light and matter at the nanoscale. We do this by exploring ways to shape light and its environment. It's what we call active and passive control. Our current focus is on the interaction of light with biomolecules and nanostructures. We are part of Twente University's Department of Science and Technology and member of the MESA+ institute.
We participate in the EU-COST actions MP1102: Coherent Raman microscopy (MicroCor) and CM1202: Supramolecular photocatalytic water splitting (PERSPECT-H2O)

 

Nonlinear Optical Imaging Introduction and Pharmaceutical Applications


Andrew L. Fussell, Antti Isomäki, Ph.D Clare J. Strachan
American Pharmaceutical Review
Vol. 16, Issue 6, p54-63 oct. 30, 2013
ext. link

Nonlinear optical imaging is an emerging technology with much potential in pharmaceutical analysis. The technique encompasses a range of optical phenomena, including coherent anti-Stokes Raman scattering (CARS), second harmonic generation (SHG), and twophoton excited fluorescence (TPEF). The combined potential of these phenomena for pharmaceutical imaging includes chemical and solidstate specificity, high optical spatial and temporal resolution, nondestructive and non-contact analysis, no requirement for labels, and the compatibility with imaging in aqueous and biological environments. In this article, the theory and practical aspects of nonlinear imaging are briefly introduced and pharmaceutical and biopharmaceutical applications are considered. These include material and dosage form characterization, drug release, and drug and nanoparticle distribution in tissues and within live cells. The advantages and disadvantages of the technique in the context of these analyses are also discussed.
Printable version