Optical Sciences

Biomolecules and nanostructures

The Optical Sciences group studies the interaction of light and matter at the nanoscale. We do this by exploring ways to shape light and its environment. It's what we call active and passive control. Our current focus is on the interaction of light with biomolecules and nanostructures. We are part of Twente University's Department of Science and Technology and member of the MESA+ institute.
We participate in the EU-COST actions MP1102: Coherent Raman microscopy (MicroCor) and CM1202: Supramolecular photocatalytic water splitting (PERSPECT-H2O)

 

Programming balanced optical beam splitters in white paint

(full pdf)

Simon R. Huisman, Thomas J. Huisman, Sebastianus A. Goorden, Allard P. Mosk, and Pepijn W. H. Pinkse
Optics Express
vol. 22 issue 7 p. 8320-8332 april 1, 2014
doi:10.1364/OE.22.008320

Wavefront shaping allows for ultimate control of light propagation in multiple-scattering media by adaptive manipulation of incident waves. We shine two separate wavefront-shaped beams on a layer of dry white paint to create two enhanced output spots of equal intensity. We experimentally confirm by interference measurements that the output spots are almost correlated like the two outputs of an ideal balanced beam splitter. The observed deviations from the phase behavior of an ideal beam splitter are analyzed with a transmission matrix model. Our experiments demonstrate that wavefront shaping in multiple-scattering media can be used to approximate the functionality of linear optical devices with multiple inputs and outputs.
© 2014 Optical Society of America
Printable version