Optical Sciences

Biomolecules and nanostructures

The Optical Sciences group studies the interaction of light and matter. Our current focus is on detection and sensing/imaging with an emphasis on the development of integrated photonics. We are part of Twente University's Department of Science and Technology and member of the MESA+ institute.

 

Near-field fluorescence imaging of genetic material: Toward the molecular limit


vanHulst NF, GarciaParajo MF, Moers MHP, Veerman JA, Ruiter AGT
JOURNAL OF STRUCTURAL BIOLOGY
vol 119 issue 2: p222-p231 1997

Chromosomes, DNA, and single fluorescent molecules are studied using an aperture-type near-held scanning optical microscope with tuning fork shear force feedback. Fluorescence in situ hybridization labels o­n repetitive and single copy probes o­n human metaphase chromosomes are imaged with a width of 80 nm, allowing their localization with nanometer accuracy, in direct correlation with the simultaneously obtained topography. Single fluorophores, both in polymer and covalently attached to amino- silanized glass, are imaged using two-channel fluorescence polarization detection. The molecules are selectively excited according to their dipole orientation. The orientation of the dipole moment of all molecules in o­ne image could be directly determined. Rotational dynamics o­n a 10-ms to 100-s timescale is observed. Finally, shear force imaging of double-stranded DNA with a vertical sensitivity of 0.2 nm is presented. A DNA height of 1.4 nm is measured, which indicates the nondisturbing character of the shear force mechanism. (C) 1997 Academic Press.
Printable version