Optical Sciences

Biomolecules and nanostructures

The Optical Sciences group studies the interaction of light and matter at the nanoscale. We do this by exploring ways to shape light and its environment. It's what we call active and passive control. Our current focus is on the interaction of light with biomolecules and nanostructures. We are part of Twente University's Department of Science and Technology and member of the MESA+ institute.
We participate in the EU-COST actions MP1102: Coherent Raman microscopy (MicroCor) and CM1202: Supramolecular photocatalytic water splitting (PERSPECT-H2O)

 

Second-order nonlinear optical properties of the four tetranitrotetrapropoxycalix[4]arene conformers


Kenis PJA, Noordman OFJ, Houbrechts S, van Hummel GJ, Harkema S, van Veggel FCJM, Clays K, Engbersen JFJ, Persoons A, van Hulst NF, Reinhoudt DN
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
vol 120 issue 31: p7875-p7883 AUG 12 1998

This paper reports a systematic experimental and theoretical study of the second-order nonlinear optical properties of multichromophoric molecules that range from dipolar symmetry to three-dimensional octupolar symmetry. The four possible conformers of tetranitrotetrapropoxycalix[4]arene (cone, pace, 1,2-air, 1,3-alt) were studied by nanosecond hyper-Rayleigh scattering and a newly developed time-resolved femtosecond hyper-Rayleigh scattering technique. The latter enables to correct for long-lived fluorescence contributions to the second harmonic scattering intensity. The depolarization ratios D-x/z prove the (partial) octupolar symmetry of the 1,2-alt and 1,3- alt conformers, and thus explain why their hyperpolarizabilities beta(FHRS) are of the same order of magnitude as those of the dipolar cone and pace conformers. The corresponding theoretical second-order nonlinear optical properties (both beta(FHRS) and D-x/z) were calculated using the conformations obtained from single-crystal X-ray diffraction, molecular mechanics (MM), and molecular dynamics (MD) calculations. In contrast with sum-over-state calculations presented in the literature, our theoretical method takes also into account octupolar contributions by linearly adding the NLO-properties of the separate chromophoric groups and using Bersohn's theory. The agreement between experimental and theoretical results is good both for the conformers having dipolar symmetry and for the conformers having (partly) three- dimensional octupolar symmetry. The 1,2-alt and 1,3-alt conformers of the tetranitrotetrapropoxycalix[4]arene represent the first examples of multichromophoric molecules that have high hyperpolarizabilities beta due to 3D octupolar symmetry.
Printable version