Optical Sciences

Biomolecules and nanostructures

The Optical Sciences group studies the interaction of light and matter at the nanoscale. We do this by exploring ways to shape light and its environment. It's what we call active and passive control. Our current focus is on the interaction of light with biomolecules and nanostructures. We are part of Twente University's Department of Science and Technology and member of the MESA+ institute.
We participate in the EU-COST actions MP1102: Coherent Raman microscopy (MicroCor) and CM1202: Supramolecular photocatalytic water splitting (PERSPECT-H2O)

 

Atomic steps with tuning-fork-based noncontact atomic force microscopy

(full pdf)

Rensen WHJ, van Hulst NF, Ruiter AGT, West PE
APPLIED PHYSICS LETTERS
vol 75 issue 11: p1640-p1642 SEP 13 1999

Tuning forks as tip-sample distance detectors are a promising and versatile alternative to conventional cantilevers with optical beam deflection in noncontact atomic force microscopy (AFM). Both theory and experiments are presented to make a comparison between conventional and tuning-fork-based AFM. Measurements made o­n a Si(111) sample show that both techniques are capable of detecting monatomic steps. The measured step height of 0.33 nm is in agreement with the accepted value of 0.314 nm. According to a simple model, interaction forces of 30 pN are obtained for the tuning-fork-based setup, indicating that, at the proper experimental conditions, the sensitivity of such an instrument is competitive to conventional lever-based AFM. (C) 1999 American Institute of Physics. [S0003- 6951(99)05337-1].
Printable version