Optical Sciences

Biomolecules and nanostructures

The Optical Sciences group studies the interaction of light and matter at the nanoscale. We do this by exploring ways to shape light and its environment. It's what we call active and passive control. Our current focus is on the interaction of light with biomolecules and nanostructures. We are part of Twente University's Department of Science and Technology and member of the MESA+ institute.
We participate in the EU-COST actions MP1102: Coherent Raman microscopy (MicroCor) and CM1202: Supramolecular photocatalytic water splitting (PERSPECT-H2O)

 

Cell biology beyond the diffraction limit: near-field scanning optical microscopy

(full pdf)

de Lange F, Cambi A, Huijbens R, de Bakker B, Rensen W, Garcia-Parajo M, van Hulst N, Figdor CG
JOURNAL OF CELL SCIENCE
vol 114 issue 23: p4153-p4160 DEC 2001

Throughout the years, fluorescence microscopy has proven to be an extremely versatile tool for cell biologists to study live cells. Its high sensitivity and non-invasiveness, together with the ever-growing spectrum of sophisticated fluorescent indicators, ensure that it will continue to have a prominent role in the future. A drawback of light microscopy is the fundamental limit of the attainable spatial resolution - similar to 250 urn - dictated by the laws of diffraction. The challenge to break this diffraction limit has led to the development of several novel imaging techniques. o­ne of them, near-field scanning optical microscopy (NSOM), allows fluorescence imaging at a resolution of o­nly a few tens of nanometers and, because of the extremely small near-field excitation volume, reduces background fluorescence from the cytoplasm to the extent that single-molecule detection sensitivity becomes within reach. NSOM allows detection of individual fluorescent proteins as part of multimolecular complexes o­n the surface of fixed cells, and similar results should be achievable under physiological conditions in the near future.
Printable version