
Introduction
Fluorescence microscopy has gained a firm position among the
most important research tools in modern cell biology. It offers
high chemically specific contrast, and is non-invasive, and sample
handling is non-destructive and therefore allows the study of
living cells. Moreover, optical detection is very fast, providing
picosecond time resolution, and the very nature of light offers
additional contrast mechanisms (e.g. based on polarization or
phase discrimination) that yield additional information.
Furthermore, imaging can be performed in three dimensions by
multi-photon excitation, confocal detection or deconvolution
techniques. Finally, a wide range of ultra-sensitive detectors – for
example, cooled CCD (charge-coupled device) cameras and
photon-counting devices – that make optical detection extremely
sensitive, even down to the single-molecule level, are available.

The ability to tailor fluorescent fusion proteins, exploiting
the strong autofluorescence of the green fluorescent protein
(GFP) family (Patterson et al., 2001), has fueled interest in
fluorescence microscopy even further. The most successful
applications of these fluorescent proteins are in gene
expression, protein targeting and trafficking, and protein-
protein interaction studies (Tsien, 1998; Lippincott-Schwartz
et al., 2001). Employing various forms of these fluorescent
proteins, in most cases using fluorescence resonance energy
transfer (FRET) as a read-out (Wouters et al., 2001), highly
potent cellular indicators for calcium (Miyawaki et al., 1997;
Miyawaki et al., 1999), pH (Llopes et al., 1998), cyclic AMP
(Zaccolo et al., 2000), cyclic GMP (Honda et al., 2001),
caspases (Harpur, 2001) and small G protein activity
(Mochizuki et al., 2001), among others, have been developed. 

The limit to the resolution that can be reached in optical

imaging techniques is directly related to the wavelength of the
light. This diffraction limit originates from the fact that it is
impossible to focus light to a spot smaller than half its
wavelength. In practice this means that the maximal resolution
in optical microscopy is ~250-300 nm. Since a large body of
evidence indicates that dynamic cell-signaling events start by
oligomerization and interaction of individual proteins (i.e. on
the molecular scale), the need for imaging techniques that have
a higher resolution is growing. Traditionally, high-resolution
cell biology (Table 1) is the arena of electron microscopy, which
offers superb resolution but lacks the above-mentioned
advantages of fluorescence microscopy. The advent of scanning
probe microscopy (Table 1), and especially atomic force
microscopy (AFM), in which an atomically sharp probe
attached to a cantilever is scanned over the surface of interest,
has made nanometer resolution also attainable on living cells
(Hansma et al., 1994; Putman et al., 1994). However, although
AFM produces a high-resolution topographical picture of the
sample, it lacks chemical specificity. Hence, although individual
molecules can be seen, their identities cannot be defined. This
seriously limits the usefulness of AFM for high-resolution
imaging on cells. Initially, this contrast problem was tackled by
the use of immunogold-labeling approaches (Damjanovich et
al., 1995; Neagu et al., 1994). A promising new way around the
problem comes from work on the specific labeling of the AFM
probe with biomolecules (e.g. with antibodies or ligands). This
introduces a contrast mechanism based on specific interactions
between the probe and certain types of molecule in the
specimen (Willemsen et al., 2000). Other attempts to enhance
AFM contrast involve the modification of the probe by
fluorescent molecules, which introduces an optical contrast
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Throughout the years, fluorescence microscopy has proven
to be an extremely versatile tool for cell biologists to study
live cells. Its high sensitivity and non-invasiveness, together
with the ever-growing spectrum of sophisticated fluorescent
indicators, ensure that it will continue to have a prominent
role in the future. A drawback of light microscopy is the
fundamental limit of the attainable spatial resolution –
~250 nm – dictated by the laws of diffraction. The challenge
to break this diffraction limit has led to the development of
several novel imaging techniques. One of them, near-field
scanning optical microscopy (NSOM), allows fluorescence
imaging at a resolution of only a few tens of nanometers

and, because of the extremely small near-field excitation
volume, reduces background fluorescence from the
cytoplasm to the extent that single-molecule detection
sensitivity becomes within reach. NSOM allows detection
of individual fluorescent proteins as part of multimolecular
complexes on the surface of fixed cells, and similar results
should be achievable under physiological conditions in the
near future. 
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mechanism (Vickery and Dunn, 2001). Currently, however, the
combination of high-resolution scanning probe and
fluorescence microscopy is the realm of another scanning probe
technique: near-field scanning optical microscopy (NSOM).

NSOM
In NSOM, as in the case of AFM, a sharp probe physically
scans the sample surface (Fig. 1). Besides topography, NSOM
also generates optical images. A typical NSOM configuration
is shown in Fig. 2. The practical feasibility of this kind of
NSOM was first demonstrated by Pohl et al., immediately
following the advent of scanning probe microscopy and in fact
before the introduction of the AFM (Pohl et al., 1984). The
most generally applied near-field optical probe consists of a
small aperture, typically 20-120 nm in diameter (i.e. much
smaller than the wavelength of the excitation light), at the end
of a metal-coated tapered optical fiber* (Fig. 3A,B). This probe
is the most critical element of the technique and is difficult to
produce reliably and in large quantities (Van Hulst et al., 2000).

In fluorescence mode*, it serves as a constriction that funnels
an incident light wave to dimensions that are substantially
below the diffraction limit. This results in a light-source that
has the size of the aperture. However, in contrast to common
light sources such as lightbulbs and lasers, the light emitted by
the probe is predominantly composed of evanescent waves
rather than propagating waves. The intensity of the evanescent
light decays exponentially and to insignificant levels ~100 nm
from the aperture. Effectively, the probe can excite
fluorophores only within a layer of <100 nm from the probe –
that is, in the ‘near-field’ region (Fig. 3B). Sample fluorescence
can subsequently be collected by conventional optics (Fig. 2)
and transformed into an optical image of the sample surface in
which the resolution is now primarily dictated by the aperture
dimensions rather than by the wavelength of the light. 

Since the near-field intensity decays so rapidly with distance
from the probe, for efficient excitation it is essential to have
accurate control of the probe-sample distance during scanning.
As in AFM, this can be accomplished by using a (force)
feedback loop. However, in contrast to regular AFM, which
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Table 1. High-resolution imaging in cell biology
Type Subtype Remarks Application References

Light microscopy Wide field, phase-contrast, Max. resolution 250 nm TIRF: cell-substrate contact Smilenov et al., 1999 (IRM)
differential interference Spectral, polarization and zone, tunable penetration depth Lippincott-Schwartz et al., 2001
contrast (DIC), etc. phase contrast DIC: cell-substrate contacts, (FRAP)

Confocal laser scanning Relatively easy to do focal adhesion Toomre and Manstein, 2001 
microscopy (CLSM) Widely accessible Intermolecular and intramolecular (TIRF)

Total internal reflection Non invasive dynamics by FRET Johns et al., 2001 (TIRF)
fluorescence microscopy (TIRF) Possible on living cells CLSM, FRAP Richter et al., 2000 (IRM)
(evanescent wave microscopy) Dynamics; protein diffusion, Various microscopy imaging

Reflection contrast microscopy: targeting and trafficking Single molecule imaging 
interference reflection (Table 2)
microscopy (IRM)

Electron microscopy Scanning EM Max. resolution 0.1 nm Cell surface Allen et al., 2000
Transmission EM Contrast based on density Cell sections Muller and Engel, 2001
Scanning transmission EM Requires expert knowledge Immunogold labeling

Invasive Mass determination
Not possible on living cells Imaging of sub-molecular structure

*Scanning probe Subtype Contrast Surface techniques Cell volume changes Korchev et al., 2000a; Korchev 
microscopy SICM Ionic current Simultaneous topography Localization of single ion-channel et al., 2000b (SICM, cell 

SCM/ScaM Dielectric properties imaging on cell surface volume)
SCPM Chemical potential Resolution dependent on Polymer science/tissue Willemsen et al., 2000 (AFM,
SThM Thermocouple probe radius (tens of nm) and engineering Forces)

junction scanned sample physical properties Single-molecule imaging Engel and Muller, 2000 (AFM, 
across sample Requires expert knowledge Molecular interactions in cells sub-molecular resolution)

AFM Short-range Apart from AFM techniques (AFM force imaging) Lehenkari et al., 2000 (AFM
interaction forces still in experimental phase Sub-molecular resolution of in cell biology)
between tip and Non invasive proteins by carbon nanotubes Woolley et al., 2000 (AFM, 
sample Possible on living cells (AFM) nanotubes)

NSOM/ PSTM Optical, sub- NSOM: optical contrast See Tables 2 and 3 See Tables 2 and 3
wavelength optical combined with topography
fiber probe Optical resolution depending 

on probe aperture diameter 
(20-120 nm) and probe- 
sample distance (less than 
5-10 nm)

Possible on living cells 
(see text)

*A detailed classification of scanning probe microscopies can be found in Friedbacher and Fuchs, 1999.

*Here, we focus on fluorescence-mode NSOM. Applications of transmission-type NSOM
to biological systems have also been described; however, for these the reader is referred
to Van Hulst and Moers (Van Hulst and Moers, 1996).

*Other types of probe exist; for example, aperture-less and non-metal-coated aperture type
probes have been described. Applications of the former in biology have, to our knowledge,
not yet been described; examples of the latter are reviewed below.
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exploits the bending of a cantilever attached to the probe as a
direct measure of the probe-sample interaction force, in NSOM
an indirect method, based on shear-force damping, is
commonly used. For this, the NSOM probe, or a piezoelectric
tuning fork attached to it, is oscillated at its resonance
frequency in a lateral vibrational mode (with a <1 nm
amplitude); when in proximity to the sample, shear-forces
dampen this motion and induce measurable changes in the
oscillation amplitude and phase. An electronic feedback
system, controlling the probe-sample distance directly through
the piezoelectric scan stage, is subsequently used to maintain
a constant oscillation amplitude/phase during scanning. In this
way, a constant probe-sample distance of <10 nm is realized
(Fig. 2). The feedback signal itself, as in AFM, is used to
generate a topographic map of the sample surface (Fig. 1). Of
course, unique to NSOM is the fact that a corresponding
fluorescence map is simultaneously generated. 

The optical detection sensitivity of NSOM depends largely
on the extremely small excitation/detection volume set by the
aperture dimensions as well as the depth of penetration of the
near-field into the specimen. Together, these properties
effectively reduce background fluorescence and thereby
enhance detection sensitivity. Betzig and Chichester exploited
this eight years ago, providing the first observation of single-
molecule fluorescence under ambient conditions (Betzig and
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Fig. 1.The principle of scanning probe microscopy. In AFM and
NSOM, a sharp probe is used to map the topographic features on the
sample surface accurately. This is done by physically scanning the
probe over the surface while maintaining a constant probe-sample
distance by force feedback. 

Fig. 2.Schematic lay out of a near-field scanning optical microscope.
The NSOM probe is a tapered optical fiber (Fig. 3A). Laser light is
coupled into the fiber and is used to excite fluorophores as the probe
scans the sample surface. The probe-sample distance is maintained
constant at <10 nm during scanning by shear-force-based distance
detection in combination with an electronic feedback system
controlling the piezoelectric scan stage. Fluorescence is collected by
a conventional inverted microscope. Dual-channel optical detection
allows wavelength and/or polarization discrimination. 

Fig. 3.The near-field optical probe. (A) An optical fiber is pulled to a
final diameter of 20-120 nm and subsequently coated with
aluminum. This coating serves to confine the light to the tip region.
A subsequent etching step results in a flat and circular endpoint and
aperture. The aperture functions as a miniature light source, and its
diameter primarily determines the optical resolution of the
microscope. (B) The principle of surface-specific excitation. The
optical near-field generated at the aperture has significant intensity
only in a layer of <100 nm from the aperture; lower lying
fluorophores are therefore not excited. Hence, background
fluorescence is effectively suppressed. This forms the basis for the
high optical detection sensitivity of this technique.
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Chichester, 1993). Furthermore, employing the polarization
characteristics of the near-field, they showed that it is possible
to determine the full spatial orientation of fluorescent molecules
by making use of polarization-sensitive fluorescence detection
(see below). Subsequently, developments in instrumentation
that greatly improved signal-to-background ratios allowed
single-molecule fluorescence studies to come within reach of
far-field methods such as total internal reflection, confocal and
bright-field microscopy (see Table 2). The advantage of single-
molecule studies is that they provide a way to monitor time-
dependent processes and reaction pathways in non-equilibrated
systems, which reveals the distribution of a given molecular
property instead of a statistical average. This has already led to
a whole new frontier in science, its applications ranging from
basic photo-physics and material research to biology (Frontiers
in Chemistry, 1999; Xie and Lu, 1999; Sako et al., 2000; Ishii
and Yanagida, 2000). Nowadays almost all experiments in this
field use far-field methods, mainly because they are relatively
easy to use. However, the obvious disadvantage is that, because
of the diffraction-limited system response, only scarcely labeled
samples can be studied, but, in biology, molecules are usually
present in close proximity. The combination of topographical
information, optical super-resolution and single-molecule
detection sensitivity therefore makes NSOM a unique tool for
biological applications.

Biological applications of NSOM 
A large body of evidence indicates that (induced) lateral
organization in the plasma membrane is crucial to trigger cell
signaling. One example is the early events in signal
transduction by the epidermal growth factor receptor (EGFR),
dimerization and phosphorylation following EGF binding
(Yarden and Schlessinger, 1987a; Yarden and Schlessinger,
1987b). Another is the formation of focal adhesions, large
signaling complexes involved in cell-adhesion and migration,

and their equivalent on leukocytes, ‘adhesisomes’. An
important first step in the assembly of such complexes
appears to be clustering of integrin receptors (Balaban et al.,
2001; Van Kooyk and Figdor, 2000). Understanding of the
signaling capacities of these adhesion sites requires insight
into their assembly and spatial organization on the molecular
level. The concept of ‘lipid rafts’ provides yet another
level of organization in the plasma membrane at the
submicroscopic level (Simons and Toomre, 2000). So far,
these phenomena have been studied by use of far-field optical
techniques, such as TIRF, IRM and confocal microscopy
(Table 1). Clearly, higher-resolution/sensitivity would
produce a major step forward in our understanding of the
underlying mechanisms.

So far, most applications of NSOM in biology involve
systems that are more or less isolated (Table 3) – for example,
studies on fluorescently labeled chromosomes (Moers et al.,
1996), DNA (Ha et al., 1996; Garcia-Parajo et al., 1998) and
purified fluorescent proteins (Garcia-Parajo et al., 1999;
Garcia-Parajo et al., 2000). Cell biological studies include
fluorescence imaging of cytoskeletal components in 3T3
fibroblasts (Betzig et al., 1993) and colocalization of malarial
and host skeletal proteins on malaria-infected erythrocytes
(Enderle et al., 1997). Furthermore, sub-wavelength-sized
membrane patches in human skin fibroblasts (Hwang et al.,
1998) and activation-dependent receptor clustering on a human
breast carcinoma cell line have also been studied (Nagy et al.,
1999). Although these studies show a resolution well beyond
that of a confocal microscope, to the best of our knowledge no
study showing single-molecule detection sensitivity in a cell
membrane by NSOM has been reported. 

Single-molecule detection on cells by NSOM
To demonstrate the potential of near-field optical microscopy
to study the distribution and orientation of cell surface
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Table 2. Single-molecule fluorescence microscopy
Localization Max. no. of 

Technique Application Living cells? Resolution accuracy dyes per µm2 References

Wide-field Single molecule diffusion in cell Yes <250 nm <<40 nm <10 Schmidt et al., 1996
and artificial membranes Schütz et al., 2000

Harms et al., 2001

Confocal Enzyme/DNA conformational Yes ~250 nm ~40 nm 10 Weiss, 1999
dynamics studied by single pair Ha et al., 1999
FRET Moerner et al., 1999

Single dye photophysics Van Oijen et al., 1999
Deniz et al., 1999
Talaga et al., 2000

TIRF Cell-substrate contact zone Yes ~250 nm ~40 nm 10 Ishijima et al., 1998
Inter- and intramolecular interactions Kitamura et al., 1999
and dynamics; FRET Ishii and Yanagida, 2000

Single molecule diffusion Sako et al., 2000

NSOM Single GFP/dye photophysics Not yet >50 nm possible >6 nm 100 Betzig et al., 1993
DNA conformation studied by single Xie and Dunn, 1994
pair FRET Ambrose et al., 1994

Single molecule spectroscopy Ha et al., 1996
Lifetimes of single dyes Ruiter et al., 1997

Garcia-Parajo et al., 1999
Garcia-Parajo et al., 2000
Van Hulst et al., 2000
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molecules, we investigated the distribution of LFA-1 (αL/β2
integrin) molecules in murine fibroblasts. Fig. 4A shows a
bright-field image as well as a near-field ‘zoom-in’ on the
surface of a fixed and critical-point-dried L-cell (a mouse
fibroblast cell line) expressing human GFP-tagged LFA-1*. 

The near-field image shows a number of interesting findings.
First individual fluorescent LFA-1 molecules (circles, squares
and hexagon) as well as clusters of molecules can be
recognized (arrows). Secondly, one can observe different
orientations of the GFP linked to the LFA-1 β chain, as
determined by the polarization of the emitted light. The latter
is of great value to discriminate LFA-1 molecules that are
closer than half the tip-aperture diameter. Although these
molecules cannot be discriminated by their fluorescence
intensity signal, the difference in polarization contrast reveals
them as separate entities (Van Hulst et al., 2000). Finally, the
figure shows examples of photodissociation (circles) and the
characteristic blinking behavior (squares and inset) of single
molecule GFP fluorescence (Garcia-Parajo et al., 2000). Fig.
4B depicts a line trace through the feature marked with a
hexagon, showing a signal-to-background ratio of 7 and a 90
nm full width at half maximum (FWHM; arrows). From the
latter, one can calculate that the lateral resolution in this image
is ~40 nm (Van Hulst et al., 2000). Taken together, the discrete
photo-behavior, defined polarization characteristics and the
number of counts per spot provide compelling evidence that
individual molecules can be recognized on the cell surface by
NSOM.

Single-molecule localization accuracy by NSOM as
compared to other microscopical techniques
A direct comparison between the localization accuracy of cell
membrane receptor molecules of NSOM and far-field imaging
techniques is instructive (Table 2). In confocal fluorescence
studies, using a 1.3 numerical aperture objective, two groups
have reported a lateral positioning accuracy of 30-40 nm
(Schmidt et al., 1996; Van Oijen et al., 1998). For 104 collected
photons and a 70 nm aperture probe, NSOM can be calculated
to attain a localization accuracy of 6 nm – a level comparable
to the FRET interaction-distance regime (0-10 nm). Given a

resolution of ~50 nm, NSOM should allow independent
observation of several hundreds of molecules/µm2, which is an
order of magnitude more than that achievable by far-field
methods. We expect the achievable level of sensitivity of near-
field methodology to be sufficient to tackle questions related
to the distribution of molecules that are packed at
physiologically relevant densities on the cell surface. We
therefore anticipate that NSOM will yield results comparable
to those obtained by (immunogold) transmission electron
microscopy but under physiological conditions.

These intrinsic advantages of NSOM might revolutionize the
life sciences. But why is NSOM hardly used in cell biology,
despite its development almost two decades ago? First, as an
imaging tool, NSOM is a complex technique that requires well-
trained operators. Second, as we point out above, the resolution
and sensitivity of a near-field microscope depend strongly on
the quality of the probe aperture and the accuracy of the
feedback system, necessitating full control of the technology.
Moreover, the top-grade near-field microscopes are still under
development in experimental physics laboratories and are
therefore not widely accessible. Perhaps most important is the
fact that, despite great efforts of various groups including our
own, the standards set by the initial work of Betzig and
Chichester cannot yet be reached in a liquid and more
physiological environment. This is the technical challenge that
has to be faced in the coming years. 

Conclusion/perspectives 
NSOM combines the high resolution of scanning probe
microscopy with the contrast of optical microscopy. It can
achieve single-molecule detection sensitivity on the cell
surface and allows independent observation of molecules at
physiologically relevant packing densities. The level of detail
and sensitivity offered by this technique will be of particular
value in studies of the spatial organization of the plasma
membrane. Co-localization studies, a common application of
far-field fluorescence imaging in cell biology, when performed
by NSOM will provide unprecedented detail and accuracy,
which are impossible to obtain by diffraction-limited imaging
techniques. Potentially of great importance will be the
application of NSOM in single-pair FRET studies combined
with high-resolution imaging to study intermolecular

Table 3. Biological applications of NSOM
System Mode Type of analysis Air Liquid References

Mouse fibroblast Aperture type, High-resolution imaging of actin + Betzig et al., 1993
metal-coated fiber cytoskeleton in a cell protrusion

Shared aperture (collection mode), Study on the localized interactions + Kirsch et al., 1999
non-coated probe between labeled conA molecules on 

the surface of 3T3 fibroblasts (FRET)

DNA Aperture type, metal-coated fiber DNA conformation probed using + Ha et al., 1996
dual-labeled oligomers (FRET)

Human etythrocytes Aperture type, metal-coated fiber Imaging of molecular colocalization + Enderle et al., 1997
of malarial and host skeletal protein 
on the cell membrane

Human skin fibrobast Aperture type, metal-coated fiber Investigation of cell membrane domains + + Hwang et al., 1998
Human breast tumor Shared aperture (collection mode), Detection and characterization of ErbB2 Nagy et al., 1999
cell non-coated probe clustering on the surface of quiescent 

and activated cells
Chromosome Aperture type, metal-coated fiber High-resolution fluorescence in situ + Van Hulst and Moers, 1996

hybridization Hausmann et al., 2001

*Sample preparation will be detailed elsewhere.



4158

interactions or intramolecular dynamics at the single-molecule
level on cells. The first such examples have already been
reported (Kirsch et al., 1999); however, although clearly
showing resolution below the diffraction limit, single-molecule
detection sensitivity has not yet been reached. Importantly,

NSOM bridges the gap between the diffraction-limited
response of normal light microscopy and the 5-10 nm distance
sensitivity inherent in FRET and, as such, already provides
important additional but otherwise unobtainable information. 

In the past decade, especially the past two years, several
other approaches to break the diffraction limit have been
developed. These include interferometric microscopy methods
such as 4Pi confocal microscopy (Hell and Stelzer, 1992),
I5M (Gustafsson et al., 1999), standing-wave-total-internal-
reflection fluorescence microscopy (Cragg and So, 2000) and
harmonic excitation light microscopy (Frohn et al., 2000).
These methods, however, do not have single-molecule
detection sensitivity, and all require extended electronic post-
processing of the images. Recently, a novel technique
involving ‘point spread function (PSF) engineering’, which
exploits stimulated emission depletion (STED), has been
described (Klar et al., 2000). This method involves the
induced quenching of fluorescence by stimulated emission at
the rim of the diffraction-limited focal spot, thereby squeezing
it to an almost spherical shape of ~100 nm in diameter. Thus
far, this is the only technique that seriously rivals the small
excitation/detection volume and therefore sensitivity of
NSOM. The maximal resolution obtained with aperture-type
NSOM relates to the limited energy throughput of the near-
field probe. This limits the minimum size of the aperture to be
used and hence the resolution of the microscope to ~20 nm.
A possible way around this involves exploiting single-
molecule emitters, attached to a scanning probe, which act as
light source to excite molecules in the sample (Michaelis et
al., 2000).

The most important technical challenge that remains is the
construction of an NSOM instrument that operates under
physiologically relevant conditions and allows the study of
soft, rough and motile surfaces, such as the plasma membrane
of living cells. When combined with single-molecule detection
sensitivity and an optical resolution that is comparable to
transmission electron microscopy, this will prove to be an
invaluable tool in cell biology. These are truly exciting times.

We thank Jeroen Korterik, Frans Segerink, Marjolein Koopman and
Ben Joosten for expert technical assistance. Frank de Lange is
supported by grant FB-N/T-1a from the Netherlands Foundation for
Fundamental Research of Matter (FOM). Bärbel de Bakker is
supported by grant TTN4812 from the Dutch Technology Foundation
(STW). The research by Maria Garcia-Parajo was made possible by
a fellowship of the Royal Netherlands Academy of Arts and Sciences
(KNAW).

References
Allen, T. D., Cronshaw, J. M., Bagley, S., Kiseleva, E. and Goldberg, M.

W. (2000). The nuclear pore complex. J. Cell Sci. 113, 3885-3886. 
Ambrose, W. P., Goodwin, P. M., Martin, J. C. and Keller, R. A.(1994).

Alterations of single molecule fluorescence lifetimes in near-field optical
microscopy. Science265, 364-367.

Balaban, N. Q., Schwarz, U. S., Riveline, D., Goichberg, P., Tzur, G.,
Sabanay, I., Mahalu, D., Safran, S., Bershadsky, A., Addadi, L. and
Geiger B.(2001). Force and focal adhesion assembly: a close relationship
studied using elastic micropatterned substrates. Nat. Cell Biol. 3, 466-
472.

Betzig, E. and Chichester, R. J.(1993). Single molecules observed by near-
field scanning optical microscopy. Science 262, 1422-1425. 

Betzig, E., Chichester, R. J., Lanni, F. and Taylor, D. L.(1993). Near-field
fluorescence imaging of cytoskeletal actin. Bioimaging 1, 129-133.

JOURNAL OF CELL SCIENCE 114 (23)

Fig. 4. (A) Single molecule detection on cells by NSOM. This figure
shows a 40 nm optical resolution near-field ‘zoom-in’ on the indicated
area (3.2 × 3.2 µm2) in the bright-field image of a fibroblast
expressing LFA-1-GFP. GFP excitation is accomplished using 488 nm
light (Ar-Kr laser line) linearly polarized along 90°. Fluorescence is
collected by a 1.3 numerical aperture oil-immersion objective in
combination with standard optical filters. A polarizing beam-splitter
cube (Newport, Fountain Valley, CA) is used to split the fluorescence
signal into two perpendicular polarized components (compare with
Fig. 2). Both signals are then detected by photon-counting avalanche
photodiode detectors (APD, SPCM-100, EG&G Electro optics,
Quebec). The red/green color-coding of the signals reflects the
orientation of the GFP molecules in the plane of the sample.
Examples of clustered molecules (arrows) as well as examples
showing clear single-molecule detection sensitivity are indicated
(circles and squares). The squares show the fast-blinking behavior
typical of single molecule GFP fluorescence. The circles present
demonstrations of discrete photodissociation phenomena.
(B) Estimation of the resolution in the near-field image. This figure
shows a line trace through the feature marked with the hexagon in the
near-field image. The full width at half maximum (FWHM; arrows) of
such traces can be used to obtain an estimate for the maximal
resolution (half the FWHM) in the near-field image. On this basis, we
estimate the resolution in the near-field image to be ~40 nm.



4159Cell biology beyond the diffraction limit

Cragg, G. E. and So, P. T. C.(2000). Lateral resolution enhancement with
standing evanescent waves. Opt. Lett. 25, 46-48.

Damjanovich, S., Vereb, G., Schaper, A., Jenei, A., Matko, J., Starink, J.
P., Fox, G. Q., Arndt-Jovin, D. J. and Jovin, T. M.(1995). Structural
hierarchy in the clustering of HLA class I molecules in the plasma
membrane of human lymphoblastoid cells. Proc. Natl. Acad. Sci. USA92,
1122-1126.

Deniz, A. A., Dahan, M., Grunwell, J. R., Ha, T., Faulhaber, A. E., Chemla,
D. S., Weiss S. and Schultz, P. G.(1999). Single-pair fluorescence
resonance energy transfer on freely diffusing molecules: observation of
Forster distance dependence and subpopulations. Proc. Natl. Acad. Sci. USA
96, 3670-3675. 

Enderle, T., Ha, T., Ogletree, D. F., Chemla, D. S., Magowan, C. and Weiss,
S. (1997). Membrane specific mapping and colocalization of malarial and
host skeletal proteins in the Plasmodium falciparuminfected erythrocyte by
dual-color near-field scanning optical microscopy. Proc. Natl. Acad. Sci.
USA94, 520-525.

Engel, A. and Muller, D. J. (2000). Observing single biomolecules at work
with the atomic force microscope. Nat. Struct. Biol.7, 715-718. 

Friedbacher, G. and Fuchs, H.(1999). Classification of scanning probe
microscopics (Technical report). Pure Appl. Chem.71, 1337-1357.

Frohn, J. T., Knapp, H. F. and Stemmer, A.(2000). True optical resolution
beyond the Rayleigh limit achieved by standing wave illumination. Proc.
Natl. Acad. Sci. USA97, 7232-7236.

Frontiers in Chemistry: Single Molecules, topical issue (1999). Science283,
1667-1695.

Garcia-Parajo, M. F., Veerman, J. A., Ruiter, A. G. and Van Hulst, N. F.
(1998). Near-field optical and shear-force microscopy of single fluorophores
and DNA molecules. Ultramicroscopy71, 311-319.

Garcia-Parajo, M. F., Veerman, J. A., Segers-Nolten, G. M., de Grooth, B.
G., Greve, J. and Van Hulst, N. F.(1999). Visualising individual green
fluorescent proteins with a near field optical microscope. Cytometry36, 239-
246.

Garcia-Parajo, M. F., Segers-Nolten, G. M., Veerman, J. A., Greve, J. and
Van Hulst, N. F. (2000). Real-time light-driven dynamics of the
fluorescence emission in single green fluorescent protein molecules. Proc.
Natl. Acad. Sci. USA97, 7237-7242.

Gustafsson, M. G., Agard, D. A. and Sedat, J. W.(1999). I5M: 3D widefield
light microscopy with better than 100 nm axial resolution. J. Microsc.195,
10-16. 

Ha, T., Enderle, T., Ogletree, D. F., Chemla, D. S., Selvin, P. R. and Weiss,
S. (1996). Probing the interaction between two single molecules:
fluorescence resonance energy transfer between a single donor and a single
acceptor. Proc. Natl. Acad. Sci. USA93, 6264-6268.

Ha, T., Ting, A. Y., Liang, J., Caldwell, W. B., Deniz, A. A., Chemla, D. S.,
Schultz, P. G. and Weiss, S.(1999). Single-molecule fluorescence
spectroscopy of enzyme conformational dynamics and cleavage mechanism.
Proc. Natl. Acad. Sci. USA96, 893-898.

Hansma, P. K., Cleveland J. P., Radmacher, M., Walters, D. A., Hillner, P.
E., Bezanilla, M., Fritz, M., Vie, D., Hansma, H. G., Prater, C. B. et al.
(1994). Tapping mode Atomic Force Microscopy in liquids. Appl. Phys.
Lett. 64, 1738-1740. 

Harms, G. S., Cognet, L., Lommerse, P. H., Blab, G. A. and Schmidt, T.
(2001). Autofluorescent proteins in single-molecule research: applications
to live cell imaging microscopy. Biophys. J. 80, 2396-2408.

Harpur, A. G., Wouters, F. S. and Bastiaens, P. I.(2001). Imaging FRET
between spectrally similar GFP molecules in single cells. Nat. Biotechnol.
19, 167-169.

Hausmann, M., Perner, B., Rapp, A., Scherthan, H. and Greulich, K.-O.
(2001). NSOM imaging of labelled mitotic and meiotic chromosomes. Eur.
Microsc. Anal. 71, 5-7.

Hell, S. W. and Stelzer, E. H. (1992). Properties of a 4Pi-confocal
fluorescence microscope. J. Opt. Soc. Am.9, 2159-2166.

Honda, A., Adams, S. R., Sawyer, C. L., Lev-Ram, V. V., Tsien, R. Y. and
Dostmann, W. R. (2001). Spatiotemporal dynamics of guanosine 3′,5′-
cyclic monophosphate revealed by a genetically encoded, fluorescent
indicator. Proc. Natl. Acad. Sci. USA98, 2437-2442.

Hwang, J., Gheber, L. A., Margolis, L. and Edidin, M.(1998). Domains in
cell plasma membranes investigated by near-field scanning optical
microscopy. Biophys. J.74, 2184-2190.

Ishii, Y. and Yanagida, T.(2000). Single molecule detection in Life Science.
Single Mol.1, 5-13.

Ishijima, A., Kojima, H., Funatsu, T., Tokunaga, M., Higuchi, H., Tanaka,
H. and Yanagida, T. (1998). Simultaneous observation of individual

ATPase and mechanical events by a single myosin molecule during
interaction with actin. Cell 92, 161-171.

Johns, L. M., Levitan, E. S., Shelden, E. A., Holz, R. W. and Axelrod, D.
(2001). Restriction of secretory granule motion near the plasma membrane
of chromaffin cells. J. Cell Biol.153, 177-190.

Kirsch, A. K., Subramaniam, V., Jenei, A. and Jovin, T. M. (1999).
Fluorescence resonance energy transfer detected by scanning near-field
optical microscopy. J. Microsc.194, 448-454. 

Kitamura, K., Tokunaga, M., Iwane, A. H. and Yanagida, T. (1999). A
single myosin head moves along an actin filament with regular steps of 5.3
nanometres. Nature397, 129-134.

Klar, T. A., Jakobs, S., Dyba, M., Egner, A. and Hell, S. W.(2000).
Fluorescence microscopy with diffraction resolution barrier broken by
stimulated emission. Proc. Natl. Acad. Sci. USA97, 8206-8210.

Korchev, Y. E., Negulyaev, Y. A., Edwards, C. R., Vodyanoy, I. and Lab,
M. J. (2000a). Functional localization of single active ion channels on the
surface of a living cell. Nat. Cell Biol. 2, 616-619.

Korchev, Y. E., Gorelik, J., Lab, M. J., Sviderskaya, E. V., Johnston, C.
L., Coombes, C. R., Vodyanoy, I. and Edwards, C. R.(2000b). Cell
volume measurement using scanning ion conductance microscopy. Biophys.
J. 78, 451-457.

Lehenkari, P. P., Charras, G. T., Nykanen, A. and Horton, M. A.(2000).
Adapting atomic force microscopy for cell biology. Ultramicroscopy 82,
289-295.

Lippincott-Schwartz, J., Snapp, E. and Kenworthy, A.(2001). Studying
protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2, 444-456.

Llopis, J., McCaffery, J. M., Miyawaki, A., Farquhar, M. G. and Tsien, R.
Y. (1998). Measurement of cytosolic, mitochondrial, and Golgi pH in single
living cells with green fluorescent proteins. Proc. Natl. Acad. Sci. USA95,
6803-6808.

Michaelis, J., Hettich, C., Mlynek, J. and Sandoghdar, V. V.(2000). Optical
microscopy using a single-molecule light source. Nature405, 325-328.

Miyawaki, A., Llopis, J., Heim, R., McCaffery, J. M., Adams, J. A., Ikura,
M. and Tsien, R. Y.(1997). Fluorescent indicators for Ca2+ based on green
fluorescent proteins and calmodulin. Nature388, 882-887.

Miyawaki, A., Griesbeck, O., Heim, R. and Tsien, R. Y.(1999). Dynamic
and quantitative Ca2+ measurements using improved cameleons. Proc. Natl.
Acad. Sci. USA96, 2135-2140.

Mochizuki, N., Yamashita, S., Kurokawa, K., Ohba, Y., Nagai, T.,
Miyawaki, A. and Matsuda, M. (2001). Spatio-temporal images of growth-
factor-induced activation of Ras and Rap1. Nature411, 1065-1068.

Moerner, W. E., Peterman, E. J., Brasselet, S., Kummer, S. and Dickson,
R. M. (1999). Optical methods for exploring dynamics of single copies of
green fluorescent protein. Cytometry36, 232-238.

Moers, M. H., Kalle, W. H., Ruiter, A. G., Wiegant, J. C., Raap, A. K.,
Greve, J., de Grooth, B. G. and Van Hulst, N. F.(1996). Fluorescence in
situ hybridization on human metaphase chromosomes detected by near-field
scanning optical microscopy. J. Microsc. 182, 40-45.

Muller, S. A. and Engel, A.(2001). Structure and mass analysis by scanning
transmission electron microscopy. Micron 32, 21-31.

Nagy, P., Jenei, A., Kirsch, A. K., Szollosi, J., Damjanovich, S. and Jovin,
T. M. (1999). Activation-dependent clustering of the erbB2 receptor tyrosine
kinase detected by scanning near-field optical microscopy. J. Cell Sci. 112,
1733-1741.

Neagu, C., Van der Werf, K. O., Putman, C. A., Kraan, Y. M., Van Hulst,
N. F., De Grooth, B. G. and Greve, J.(1994). Analysis of immunolabeled
cells by atomic force microscopy, optical microscopy and flow cytometry.
J. Struct. Biol. 112, 32-40. 

Patterson, G., Day, R. N. and Piston, D.(2001). Fluorescent protein spectra.
J. Cell Sci. 114, 837-838.

Pohl, D. W., Denk, W. and Lanz, M.(1984). Optical stethoscopy: image
recording with resolution l/20. Appl. Phys. Lett. 44, 651-653.

Putman, C. A., Van der Werf, K. O., De Grooth, B. G., Van Hulst, N. F.
and Greve, J. (1994). Tapping mode atomic force microscopy in liquid.
Appl. Phys. Lett. 64, 2454-2456. 

Richter, E., Hitzler, H., Zimmermann, H., Hagedorn, R. and Fuhr, G.
(2000). Trace formation during locomotion of L929 mouse fibroblasts
continuously recorded by interference reflection microscopy (IRM). Cell
Motil. Cytoskel.47, 38-47.

Ruiter, A. G., Veerman, J. A., Garcia-Parajo, M. F. and Van Hulst, N. F.
(1997). Single molecule rotational and translational diffusion observed by
near-field scanning optical microscopy. J. Phys. Chem. 101, 7318-7323.

Sako, Y., Minoghchi, S. and Yanagida, T.(2000). Single-molecule imaging
of EGFR signalling on the surface of living cells. Nat. Cell Biol. 2, 168-172.



4160

Schmidt, T., Schutz, G. J., Baumgartner, W., Gruber, H. J. and Schindler,
H. (1996). Imaging of single molecule diffusion. Proc. Natl. Acad. Sci. USA
93, 2926-2929.

Schutz, G. J., Kada, G., Pastushenko, V. P. and Schindler, H.(2000).
Properties of lipid microdomains in a muscle cell membrane visualized by
single molecule microscopy. EMBO J. 19, 892-901.

Simons, K. and Toomre, D.(2000). Lipid rafts and signal transduction. Nat.
Rev. Mol. Cell Biol. 1, 31-39.

Smilenov, L. B., Mikhailov, A., Pelham, R. J., Marcantonio, E. E. and
Gundersen, G. G.(1999). Focal adhesion motility revealed in stationary
fibroblasts. Science286, 1172-1174.

Talaga, D. S., Lau, W. L., Roder, H., Tang, J., Jia, Y., DeGrado, W. F. and
Hochstrasser, R. M.(2000). Dynamics and folding of single two-stranded
coiled-coil peptides studied by fluorescent energy transfer confocal
microscopy. Proc. Natl. Acad. Sci. USA 97, 13021-13026. 

Toomre, D. and Manstein, D. J.(2001). Lighting up the cell surface with
evanescent wave microscopy. Trends Cell Biol. 11, 298-303.

Tsien, R. Y. (1998). The green fluorescent protein. Annu. Rev. Biochem. 67,
509-544.

Van Hulst, N. F. and Moers, M. H.(1996). Biological applications of near-
field scanning optical micrsocopy. IEEE Eng. Med. Biol. Mag. 15, 51-58.

Van Hulst, N. F., Veerman, J. A., Garcia-Parajo, M. F. and Kuipers, L.
(2000). Analysis of individual (macro)molecules and proteins using near-
field optics. J. Chem. Phys. 112, 7799-7810.

Van Kooyk, Y. and Figdor, C. G.(2000). Avidity regulation of integrins: the
driving force in leukocyte adhesion. Curr. Opin. Cell Biol. 12, 542-547.

Van Oijen, A. M., Köhler, J., Schmidt, J., Müller, M. and Brakenhoff, G.
J. (1998). 3-Dimensional super-resolution by spectrally selective imaging.
Chem. Phys. Lett. 292, 183-187.

Van Oijen, A. M., Ketelaars, M., Kohler, J., Aartsma, T. J. and Schmidt,
J. (1999). Unraveling the electronic structure of individual photosynthetic
pigment-protein complexes. Science285, 400-402.

Vickery, S. A. and Dunn, R. C.(2001). Combining AFM and FRET for high
resolution fluorescence microscopy. J. Microsc. 202, 408-412.

Weiss, S.(1999). Fluorescence spectroscopy of single biomolecules. Science.
283, 1676-1683. 

Willemsen, O. H., Snel, M. M., Cambi, A., Greve, J., De Grooth, B. G. and
Figdor, C. G. (2000). Biomolecular interactions measured by atomic force
microscopy. Biophys. J. 79, 3267-3281. 

Woolley, A. T., Guillemette, C., Li Cheung, C., Housman, D. E. and Lieber,
C. M. (2000). Direct haplotyping of kilobase-size DNA using carbon
nanotube probes. Nat. Biotechnol. 18, 760-763.

Wouters, F. S., Verveer, P. J. and Bastiaens, P. I.(2001). Imaging
biochemistry inside cells. Trends Cell Biol. 11, 203-211.

Xie, X. S. and Dunn, R. C.(1994). Probing single molecule dynamics.
Science 265, 361-364.

Xie, X. S. and Lu, H. P.(1999). Single-molecule enzymology. J. Biol. Chem.
274, 15967-15970.

Yarden, Y. and Schlessinger, J.(1987a). Self-phosphorylation of epidermal
growth factor receptor: evidence for a model of intermolecular allosteric
activation. Biochemistry26, 1434-1442.

Yarden, Y. and Schlessinger, J.(1987b). Epidermal growth factor induces
rapid, reversible aggregation of the purified epidermal growth factor
receptor. Biochemistry26, 1443-1451.

Zaccolo, M., De Giorgi, F., Cho, C. Y., Feng, L., Knapp, T., Negulescu, P.
A., Taylor, S. S., Tsien, R. Y. and Pozzan, T.(2000). A genetically
encoded, fluorescent indicator for cyclic AMP in living cells. Nat. Cell Biol.
2, 25-29.

JOURNAL OF CELL SCIENCE 114 (23)


